If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2-17x=0
a = 4.9; b = -17; c = 0;
Δ = b2-4ac
Δ = -172-4·4.9·0
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-17}{2*4.9}=\frac{0}{9.8} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+17}{2*4.9}=\frac{34}{9.8} =3+2.875/6.125 $
| 4y+1=51 | | x=33/3100/2+32-120/4 | | 11x+2=14x-13=180 | | 3(3x+2)–12=6x+9 | | 11x+2=14x-13 | | 8=-5x+2x | | 3x+8=9x4 | | -13=5-4a | | 6=-5+2x | | 5x=x+112 | | -2g-10=2g+10 | | 81=-63-12x | | 0.4=0,30x | | x=14(15) | | 9x-17=x+8 | | 3(x=1)-5=5x-2 | | 2/3(9x−6)=1/4(12−4x) | | -6b=1-5b | | x^2-8x=209 | | 12x-48=(12/5)x | | 6-2x=10 | | 6y+9-7=4y+2y+12 | | X(3+x)-3x=25 | | 3x+7=5×-13 | | 4/x1/3x=9 | | -9s-5=-8s | | -1=-1/2(b-2)+3b | | -27=-2+5(s-8) | | 21=4+12x | | 2(x+2)-3x=-1x+4 | | 52=4n+7 | | 2(4-3x)=-46 |